Total No. of Printed Pages:05

SUBJECT CODE NO:- H-111 FACULTY OF SCIENCE AND TECHNOLOGY

S.E. (All Branches)

Engineering Mathematics - IV (REVISED)

[Time: Three Hours]

[Max. Marks: 80]

Please check whether you have got the right question paper.

N.B

- 1. Q. No. 1 and 6 are compulsory
- 2. Solve any two questions from the remaining questions of each section.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data, if necessary.

Section A

Q.1 Attempt any five

10

- 1. Find the Laplace transform of $e^{-t}\cos at$
- 2. Find the Laplace transform of $e^{-t} \frac{\sin t}{t} \delta(t-3)$.
- 3. Find the Laplace transform of $f(t) = \cos\left(t \frac{2\pi}{3}\right)$, $t > \frac{2\pi}{3}$

$$=0, t<\frac{2\pi}{3}$$

- 4. Find the inverse Laplace transform of $\frac{s}{s^2a^2+b^2}$
- 5. Find the inverse Laplace transform of $\frac{s e^{-as}}{s^2+b^2}$
- 6. Form the partial differential equation by eliminating a and b from the equation

$$2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

OR

Find z-transform of $\sin(\frac{k\pi}{2})$

7. Solve pq = 1

OR

Find the z-transform of ka^k , $k \ge 0$

05

8. Solve
$$2x \frac{\partial z}{\partial x} - 5y \frac{\partial z}{\partial y} = 0$$
OR

Find the Z-transform of $e^k \cos \alpha k$, $k \ge 0$

- Q.2 a. Find Laplace transform of $e^{-4t} \int_0^t t \sin 3t \ dt$
 - b. Find the inverse Laplace transform of $\cot^{-1}(s+1)$
 - c. Find the solution of $\frac{\partial u}{\partial t} = h^2 \frac{\partial^2 u}{\partial x^2}$ using the conditions $u(o, t) = 0 = u(l, t), u(x, 0) = \sin\left(\frac{\pi x}{l}\right)$

OR

find the z-transform of $\sin^2\left(\frac{k\pi}{4}\right)$, $k \ge 0$

- Q.3 a. Evaluate: $\int_0^\infty e^{-2t} t \sin ht \, dt$
 - b. Find inverse Laplace transform by convolution theorem $\frac{s}{(s^2+a^2)(s^2+a^2)}$
 - c. Solve $p \tan x + q \tan y = \tan z$ 05

OR

Find z-transform of $\frac{2^k}{k}$, $k \ge 1$

- Q.4 a. Express the following function in terms of Heaviside unit step function and hence find its 05 Laplace transform f(t) = 2, $0 < t < \pi$ = 0, $\pi < t < 2\pi$ $= sint, t > 2\pi$
 - b. Solve by Laplace transform $\frac{dy}{dt} + 2y + \int_0^t y \, dt = sint$, y(0) = 1
 - c. Solve p(1+q) = qz 05

OR

Find the inverse z-transform of $\frac{2Z}{(z-1)(z^2+1)}$ by residue method

Q.5 a. Find the Laplace transform of periodic function f(t) = t, 0 < t < a

05

- = 2a t, a < t < 2a and f(t) = f(t + 2a)
- b. Solve the following simultaneous L.D.E. by Laplace transform method

05

$$\frac{dx}{dt} - y = e^t, \frac{dy}{dt} + x = sint,$$
Given $x(0) = 1$, $y(0) = 0$

c. Solve: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ in the interval $0 \le x \le \pi$ subjected to the following conditions $u(o, y) = 0 = 4(\pi, y), \ u(x, 0) = 1$

And
$$u(x, y) = 0$$
 as $y \to \infty$

OR

Solve the difference equation by using Z-transform

$$2y(k+2) - 5y(k+1) + 2y(k) = 0, k \ge 0$$

Given
$$y(0) = 0$$
, $y(1) = 1$

Section B

Q.6 Attempt any five

10

- a. Find the first approximate value of the root (i. e. x_1) by Newton-Raphson method for $3x = \cos x + 1$
- b. Find f(3) for the data

	X.		2	4
7	f(x):	14	15	5

c. Find the values of x, y, z, in the first iteration by Gauss seidal method for

$$2x + y + 6z = 9$$

$$8x + 3y + z = 24$$

$$2x + 17y + 4z = 35$$

d. Find $\frac{dy}{dx}$ at x=1930 for the data

X: 00	1930	1940	1950	1960
Y?	40	60	79	103

05

05

05

- e. Evaluate $\int_{c} e^{z} dz$, where c: |z| = 1
- f. Find the image of |z| = 2 under $w = \frac{1}{z}$
- g. Find the poles and residues at each poles for $f(z) = \frac{Z^2}{(Z-1)(Z+2)}$
- h. Find the values of A and B if $f(z) = X^2 + Ay^2 + iBxy$ is analytic
- Q.7 a. Fit a straight line y = a + bx to the following data by the method of least squares 05

X:	0	1 3	6	8
Y:	1	3 2 2	5	4

b. Solve by Gauss seidal method

83x + 11y - 4z = 957x + 52y + 13z = 1043x + 8y + 29z = 71

- c. Show that the function $w = \frac{4}{z}$ transform the straight line x=a in the z-plane into a circle in 05 w-plane
- Q.8 a. Find y'(o) and y''(o) from the given table

S V	X	0		2	3	4	5
5	Y: 000	4.8	8	15	7	6	2

- b. Show that $u = -\sin x \sinh y$ is harmonic and hence find its harmonic conjugate
- c. Evaluate $\oint_C \frac{dz}{z^2 sinhz}$, where c is the circle |Z-1|=2 by cauchy's residue theorem
- Q.9 a. Given that $\frac{dy}{dx} = \frac{y-x}{y+x}$, y(o) = 1 find y(0.1) by Euler's modified method.
 - b. If f(z) = u + iv is an analytic function then find $f(z)if 2u + v = e^x(cosy siny)$ 05

EXAMINATION NOV/DEC 2018

H-111

- c. Evaluate $\oint_C \frac{z-3}{z^2+2z+5} dz$, where c: |z+1-i| = 2 by using cauchy's integral formula.
- Q.10 a. Using Runge-kutta fourth order method find y(0.1)given that

$$\frac{dy}{dx} = 3x + \frac{y}{2}, \qquad y(o) = 1, \qquad take \ h = 0.1$$

- b. Expand $f(z) = \frac{1}{(z+1)(z+3)}$ for 0 < |z-1| < 2 by Laurent series
- c. Evaluate $\int_0^{\pi \pi i} e^{\bar{Z}} dz$, along the curve x=t and y= -t